
Download free eBooks at bookboon.com

Object Oriented Programming Using Java

24

The Unified Modelling Language (UML)

2 The Unified Modelling
Language (UML)

Introduction

This chapter will introduce you to the roles of the Unified Modelling Language (UML) and explain the
purpose of four of the most common diagrams (class diagrams, object diagrams, sequence diagrams
and package diagrams). Particular emphasis will be placed on class diagrams as these are the most used
part of the UML notation.

Objectives

By the end of this chapter you will be able to…

•	 Explain what UML is and explain the role of four of the most common diagrams,
•	 Draw class diagrams, object diagrams, sequence diagrams and package diagrams.

The material covered in this chapter will be expanded on throughout later chapters of the book and the
skills developed here will be used in later exercises (particularly regarding class diagrams.

This chapter consists of six sections:-

1) An introduction to UML
2) UML Class Diagrams
3) UML Syntax
4) UML Package Diagrams
5) UML Object diagrams
6) UML Sequence Diagrams

2.1 An Introduction to UML

The Unified Modelling Language, UML, is sometimes described as though it was a methodology. It is not!

A methodology is a system of processes in order to achieve a particular outcome e.g. an organised
sequence of activities in order to gather user requirements. UML on the other hand a precise diagramming
notation that will allow program designs to be represented and discussed. As it is graphical in nature it
becomes easy to visualise, understand and discuss the information presented in the diagram. However
as the diagrams represent technical information they must be precise and clear – in order for them to
work therefore there is a precise notation that must be followed.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

25

The Unified Modelling Language (UML)

As UML is not a methodology it is left to the user to follow whatever processes they deem appropriate
in order to generate the designs described by the diagrams. UML does not constrain this – it merely
allows those designs to be expressed in an easy to use, but precise, graphical notation.

2.2 UML Class diagrams

Classes are the basic components of any object oriented software system and UML class diagrams provide
an easy way to represent these. As well as showing individual classes, in detail, class diagrams show
multiple classes and how they are related to each other. Thus a class diagram shows the architecture of
a system.

A class consists of:-

•	 a unique name (conventionally starting with an uppercase letter)
•	 a list of attributes (int, double, boolean, String etc)
•	 a list of methods

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

26

The Unified Modelling Language (UML)

This is shown in a simple box structure…

ClassName

attributes

methods()

For attributes and methods visibility modifiers are shown (+ for public access, – for private access).
Attributes normally being kept private and methods normally made public.

Note: String shown above is not a primitive data type but is itself a class. Hence it starts with a capital letter.

Thus a class Book, with String attributes of title and author, and the following methods setTitle(),
getTitle(), setAuthor(), getAuthor() and toString() would be shown as…

 Book

- title :String
- author :String

+setTitle()
+getTitle()
+setAuthor()
+getAuthor()
+toString()

Activity 1

Draw a diagram to represent a class called ‘BankAccount’ with the attribute balance (of type int)
and methods depositMoney() and withdrawMoney(). Show appropriate visibility modifiers.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

27

The Unified Modelling Language (UML)

Feedback 1

BankAccount

- balance :int

+depositMoney()
+withdrawMoney()
+displayBalance()

The diagram above shows this information

UML allows us to suppress any information we do not wish to highlight in our diagrams – this allows
us to suppress irrelevant detail and bring to the readers attention just the information we wish to focus
on. Therefore the following are all valid class diagrams…

Firstly with the access modifiers not shown…

BankAccount

balance :int

depositMoney()
withdrawMoney()
displayBalance()

Secondly with the access modifiers and the data type not shown…

BankAccount

balance :int

depositMoney()
withdrawMoney()
displayBalance()

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

28

The Unified Modelling Language (UML)

And finally with the attributes and methods not shown…

BankAccount

i.e. there is a class called ‘BankAccount’ but the details of this are not being shown.

Of course virtually all Java programs will be made up of many classes and classes will relate to each
other – some classes will make use of other classes. These relationships are shown by arrows. Different
type of arrow indicate different relationships (including inheritance and aggregation relationships).

In addition to this class diagrams can make use of keywords, notes and comments.

As we will see in examples that follow, a class diagram can show the following information:-

•	 Classes
 - attributes
 - operations
 - visibility

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

29

The Unified Modelling Language (UML)

•	 Relationships
 - navigability
 - multiplicity
 - dependency
 - aggregation
 - composition

•	 Generalization / specialization
 - inheritance
 - interfaces

•	 Keywords
•	 Notes and Comments

2.3 UML Syntax

As UML diagrams convey precise information there is a precise syntax that should be followed.

Attributes should be shown as: visibility name: type multiplicity

Where visibility is one of:-

 - ‘+’ public
 - ‘-’ private
 - ‘#’ protected
 - ‘~’ package

and Multiplicity is one of:-

 - ‘n’ exactly n
 - ‘*’ zero or more
 - ‘m..‘n’ between m and n

The following are examples of attributes correctly specified using UML:-

- custRef: int [1]
a private attribute custRef is a single int value
this would often be shown as – custRef: int However with no multiplicity shown we cannot
safely assume a multiplicity of one was intended by the author.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

30

The Unified Modelling Language (UML)

itemCodes: String [1..*]
a protected attribute itemCodes is one or more String values

validCard: boolean

an attribute validCard, of unspecified visibility, has unspecified multiplicity

Operations also have a precise syntax and should be shown as:
visibility name (par1: type1, par2: type2): returntype

where each parameter is shown (in parenthesis) and then the return type is specified.

An example would be
+ addName (newName: String): boolean

This denotes a public method ‘addName’ which takes one parameter ‘newName’ of type String and
returns a boolean value.

Activity 2

Draw a diagram to represent a class called ‘BankAccount’ with a private attribute balance (this
being a single integer) and a public method depositMoney() which takes an integer parameter,
‘deposit’ and returns a boolean value. Fully specify all of this information on a UML class diagram.

Feedback 2

The diagram below shows this information

BankAccount

- balance :int[1]

+depositMoney(deposit :int) : boolean

Denoting Relationships

As well as denoting individual classes, Class diagrams denote relationships between classes. One such
relationships is called an ‘Association’.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

31

The Unified Modelling Language (UML)

In a class attributes will be defined. These could be primitive data types (int, boolean etc.) however
attributes can also be complex objects as defined by other classes.

OneClass

value : OtherClass

Thus the figure above shows a class ‘OneClass’ that has an attribute ‘value’. This value is not a primitive
data type but is an object of type defined by ‘OtherClass’.

We could denote exactly the same information by the diagram below.

OneClass OtherClassvalue

We use an association when we want to give two related classes, and their relationship, prominence on
a class diagram

The ‘source’ class points to the ‘target’ class.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

32

The Unified Modelling Language (UML)

Strictly we could use an association when a class we define has a String instance variable – but we would
not do this because the String class is part of the Java platform and ‘taken for granted’ like an attribute
of a primitive type. This would generally be true of all library classes unless we are drawing the diagram
specifically to explain some aspect of the library class for the benefit of someone unfamiliar with its
purpose and functionality.

Additionally we can show multiplicity at both ends of an association:

OneClass OtherClass
1 1..*

This implies that ‘OneClass’ maintains a collection of objects of type ‘OtherClass’. Collections are an
important part of the Java framework that we will look at the use of collections in Chapter 7.

Activity 3

Draw a diagram to represent a class called ‘Catalogue’ and a class called ‘ItemForSale’ as defined
below:-

ItemForSale has an attribute ‘name’ of type string and an attribute ‘price’ of type int. It also has a
method setPrice() which takes an integer parameter ‘newPrice’.

‘Catalogue’ has an attribute ‘listOfItems’ i.e. the items currently held in the catalogue. As zero
or more items can be stored in the catalogue ‘listOfItems’ will need to be an array or collection.
‘Catalogue’ also has one method addItem() which takes an ‘item’ as a parameter (of type
ItemForSale) and adds this item to the ‘listOfItems’.

Draw this on a class diagram showing appropriate visibility modifiers for attributes and methods.

Feedback 3

The diagram below shows this information

Catalogue

+addItem(item :ItemForSale)

ItemForSale

- name :String
- price : int

 +setPrice(newPrice :int)

0..* 1

listOfItems

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

33

The Unified Modelling Language (UML)

Note: All class names begin in uppercase, attribute and method names begin in lowercase. Also note
that the class ItemForSale describes a single item (not multiple items). ‘listOfItems’ however maintains
a list of zero or more individual objects.

Types of Association

There are various different types of association denoted by different arrows:-

•	 Dependency,
•	 Simple association
•	 Bidirectional association
•	 Aggregation and
•	 Composition

Class A Class B Dependency

Class A Class B
Simple association
(navigable from A
to B)

Class A Class B Aggregation

Class A Class B Composition

Class A Class B Bidirectional
association

Dependency

Class A Class B

•	 Dependency is the most unspecific relationship between classes (not strictly an ‘association’)
•	 Class A in some way uses facilities defined by Class B
•	 Changes to Class B may affect Class A

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

34

The Unified Modelling Language (UML)

Typical use of dependency lines would be where Class A has a method which is passed a parameter
object of Class B, or uses a local variable of that class, or calls ‘static’ methods in Class B.

Simple Association

Class A Class B

•	 In an association Class A ‘uses’ objects of Class B
•	 Typically Class A has an attribute of Class B
•	 Navigability is from A to B:

i.e. A Class A object can access the Class B object(s) with which it is associated. The reverse
is not true – the Class B object doesn’t ‘know about’ the Class A object

A simple association typically corresponds to an instance variable in Class A of the target class B type.

Example: the Catalogue above needs access to 0 or more ItemsForSale so items can be added or removed
from a Catalogue. An ItemForSale does not need to access a Catalogue in order to set its price or
perform some other method associated with the item itself.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

35

The Unified Modelling Language (UML)

Bidirectional Association

Class A Class B

•	 Bidirectional Association is when Classes A and B have a two-way association
•	 Each refers to the other class
•	 Navigability A to B and B to A:

 - A Class A object can access the Class B object(s) with which it is associated
 - Object(s) of Class B ‘belong to’ Class A
 - Implies reference from A to B
 - Also, a Class B object can access the Class A object(s) with which it is associated

A bidirectional association is complicated because each object must have a reference to the other object(s)
and generally bidirectional associations are much less common than unidirectional ones.

An example of a bidirectional association may between a ‘Degree’ and ‘Student’. ie. given a Degree we
may wish to know which Students are studying on that Degree. Alternatively starting with a student we
may wish to know the Degree they are studying.

As many students study the same Degree at the same time, but students usually only take one Degree
there is still a one to many relationship here.

Aggregation

•	 Aggregation denotes a situation where Object(s) of Class B ‘belong to’ Class A
•	 Implies reference from A to B
•	 While aggregation implies that objects of Class B belong to objects of Class A it also implies

that object of Class B retain an existence independent of Class A. Some designers believe
there is no real distinction between aggregation and simple association

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

36

The Unified Modelling Language (UML)

An example of aggregation would be between a Class Car and a Class Tyre

We think of the tyres as belonging to the car they are on, but at the garage they may be removed and
placed on a rack to be repaired. Their existence isn’t dependent on the existence of a car with which
they are associated.

Composition

•	 Composition is similar to aggregation but implies a much stronger belonging relationship
i.e. Object(s) of Class B are ‘part of ’ a Class A object

•	 Again implies reference from A to B
•	 Much ‘stronger’ than aggregation in this case Class B objects are an integral part of Class A

and in general objects of Class B never exist other than as part of Class A, i.e. they have the
same ‘lifetime’

An example of composition would be between Points, Lines and Shapes as elements of a Picture. These
objects can only exist as part of a picture, and if the picture is deleted they are also deleted.

As well as denoting associations, class diagrams can denote:-

•	 Inheritance,
•	 Interfaces,
•	 Keywords and
•	 Notes

Inheritance

•	 Aside from associations, the other main modelling relationship is inheritance:
•	 Class A ‘inherits’ both the interface and implementation of Class B, though it may override

implementation details and supplement both.

We will look at inheritance in detail in Chapter 3.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

37

The Unified Modelling Language (UML)

Interfaces

•	 Interfaces are similar to inheritance however with interfaces only the interface is inherited.
The methods defined by the interface must be implemented in every class that implements
the interface.

•	 Interfaces can be represented using the <<interface>> keyword:

There is also a shorthand for this

In both cases these examples denote that the SaleableItem interface is required by CashTill and
implemented by Publication.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

38

The Unified Modelling Language (UML)

NB the dotted-line version of the inheritance line/arrow which shows that Publication ‘implements’ or
‘realizes’ the SaleableItem interface.

The “ball and socket” notation is new in UML 2 – it is a good visual way of representing how interfaces
connect classes together.

We will look at the application of interfaces in more detail in Chapter 4.

Keywords

UML defines keywords to refine the meaning of the graphical symbols

We have seen <<interface>> and we will also make use of <<abstract>> but there are many more.

An abstract class may alternatively be denoted by showing its name in italics though this is perhaps less
obvious to a casual reader.

Notes

Finally we can add notes to comment on a diagram element. This gives us a ‘catch all’ facility for adding
information not conveyed by the graphical notation.

Activity 4

From your own experience, try to develop a model which illustrates the use of the following
elements of UML Class Diagram notation:

•	 simple association
•	 bidirectional association
•	 aggregation (tricky!)
•	 composition
•	 association multiplicity
•	 generalization (inheritance)
•	 interfaces
•	 notes

For this exercise concentrate on the relationships between classes rather than the details of their
members. Explain and discuss your model with other students and your tutor.

To help you get started some small examples are given below.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

39

The Unified Modelling Language (UML)

In a University administration system we might produce a
transcript of results for each year the student has studied
(including a possible placement year).

This association relationship is naturally unidirectional –
given a student we might want to find their transcript(s),
but it seems unlikely that we would have a transcript and
need to find the student to whom it belonged.

In a library a reader can borrow up to eight books. A
particular book can be borrowed by at most one reader.

We might want a bidirectional relationship as shown here
because, in addition to being able to identify all the books
which a particular reader has borrowed, we might want to
find the reader who has borrowed a particular book (for
example to recall it in the event of a reservation).

This might be part of the model for some kind of
educational virtual anatomy program.

Composition – the “strong” relationship which shows
that one object is (and has to be) part of another seems
appropriate here.

The multiplicities would not always work for real people
though – they might have lost a finger due to accident or
disease, or have an extra one because of a genetic anomaly.

And what if we were modelling the “materials” in a medical
school anatomy lab? A hand might not always be part of a
body! Perhaps the “weaker” aggregation relationship would
reflect this better.

A customer can have any number of bank accounts, and
a bank account can be held by one person or two people
(a “joint account”). We have suppressed the navigability of
this relationship, perhaps because we have not yet decided
this issue.

A bank account must either be a current account or a
savings account – hence BankAccount itself is abstract.

(We could have shown this using italics rather than the
<<abstract>> keyword)

Bank Account

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

40

The Unified Modelling Language (UML)

Part of a clock is a display to show the time. This might
be an analogue display or a digital display. We could
use a superclass and two subclasses, but since the
implementation of the two displays will be entirely different
it may be more appropriate to use an interface to define
the operations which AnalogDisplay and DigitalDisplay
must provide.

A note is used here to add some information which cannot
be conveyed with standard UML notation and may not be
obvious simply from the names and relationships of the
classes depicted.

Feedback 4

There is no specific feedback for this activity.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

41

The Unified Modelling Language (UML)

2.4 UML Package Diagrams

While class diagrams are the most commonly used diagram of those defined in UML notation, and we
will make significant use of these throughout this book, there are other diagrams that denote different
types of information. Here we will touch upon three of these:-

•	 Package Diagrams
•	 Object Diagrams and
•	 Sequence Diagrams

World maps, country maps and city maps all show spatial information, just on different scales and with
differing levels of detail. Large OO systems can be made up of hundreds, or potentially thousands, of
classes and thus if the class diagram was the only way to represent the architecture of a large system it
would become overly large and complex. Thus, just as we need world maps, we need package diagrams
to show the general architecture of a large system. Even modest systems can be broken down into a few
basic components i.e. packages. We will see an example of packages in use in Chapter 11. For now we
will just look at the package diagramming notation.

A package is not just a visual representation of a group of classes instead a ‘package’ is a directory
containing a group of related classes (and interfaces). Packages allow us to provide a level of organisation
and encapsulation above that of individual classes and all of the standard Java platform classes are
arranged in a single large package hierarchy. Similarly we can also arrange our own classes using the
Java package mechanism.

Packages are described as a series of dot-separated names, e.g. java.awt.event. The names correspond to
a series of sub-directories in the file system, e.g.

A large Java development should be split into suitable packages at the design stage UML provides a
‘Package Diagram’ to represent the relationships between classes and packages.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

42

The Unified Modelling Language (UML)

We can depict

•	 classes within packages
•	 nesting of packages
•	 dependencies between packages

In the diagram below we see two packages:- ‘java’ and ‘javax’

Looking at this more closely we can see that inside the ‘java’ package is another called ‘awt’ and inside
‘javax’ is a package called ‘swing’.

The package ‘awt’ contains a class ‘Container’ and ‘javax’ contains three classes ‘JFame’, ‘JComponent’
and ‘JButton’. Finally we show that the javax.swing package has dependencies on the java.awt package.

Note that the normal UML principle of suppression applies here – both java.awt and javax.swing contain
many more classes, and ‘java’ contains other sub-packages, but we simply choose not to show them.

In the diagram below we have an alternative way of indicating that a JButton is in the javax.
swing package.

And again below a form which shows all three classes more concisely than at the top.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

43

The Unified Modelling Language (UML)

These different representations will be useful in different circumstances depending on what a package
diagram is aiming to convey.

Package Naming

By convention, package names are normally in lowercase
For local individual projects packages could be named according to personal preference, e.g.

mysystem
mysystem.interface
mysystem.engine
mysystem.engine.util
mysystem.database

However, packages are often distributed and to enable this packages need globally unique names, thus
a naming convention has been adopted based on URLs

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

44

The Unified Modelling Language (UML)

Note on a package diagram each element is not separated by a ‘.’ but by ‘::’.

Activity 5

You and a flatmate decide to go shopping together. For speed split the following
shopping list into two halves – items to be collected by you and items to be collected
by your flatmate.

Apples, Furniture polish, Pears, Carrots, Toilet Rolls, Potatoes, Floor cleaner.
Matches, Grapes

Feedback 5

To make your shopping efficient you probably organised your list into two lists of
items that are located in the same parts of the shop:-

List 1 List 2
Apples, Furniture polish,
Pears, Floor cleaner
Grapes Matches
Carrots, Toilet Rolls,
Potatoes

Activity 6

You run a team of three programmers and are required to write a program in Java to
monitor and control a network system. The system will be made up of seven classes
as described below. Organise these classes into three packages. Each programmer will
then be responsible for the code in one package. Give the packages any name you
feel appropriate.

Main this class starts the system
Monitor this class monitors the network for performance and breaches

in security
Interface this is a visual interface for entire system
Reconfigure this allows the network to be reconfigured
RecordStats this stores data regarding the network in a database
RemoteControl this allows some remote control over the system via telephone
PrintReports this uses the data stored in the database to print management

reports for the organisations management.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

45

The Unified Modelling Language (UML)

Feedback 6

When organising a project into packages there is not always ‘one correct answer’ but
if you organise your classes into appropriate packages (with classes that have related
functionality) you improve the encapsulation of the system and improve the efficiency
of your programmers. A suggested solution to activity 6 is given below.

interface
 Main
 Interface
 RemoteControl

network
 Monitor
 Reconfigure

database
 RecordStats
 PrintReports

Activity 7

Assume the URL of your organisation is ‘www.myorg.com’ and the three packages
and seven classes shown below are all part of ‘project1’. Draw a package diagram to
convey this information.

interface
 Main
 Interface
 RemoteControl

network
 Monitor
 Reconfigure

database
 RecordStats
 PrintReports

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

46

The Unified Modelling Language (UML)

Feedback 7

Note: Dependency arrows have been drawn to highlight relationships between
packages. When more thought has been put into determining these relationships
they may turn out to be associations (a much stronger relationship than a
mere dependency).

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

47

The Unified Modelling Language (UML)

2.5 UML Object Diagrams

Class diagrams and package diagrams allow us to visualise and discuss the architecture of a system
however at times we wish to discuss the data a system processes. Object diagrams allow us to visual one
instance of time and the data that a system may contain in that moment.

Object diagrams look superficially similar to class diagrams however the boxes represent specific instances
of objects.

Boxes are titled with:-
objectName: ClassName

As each box describes a particular object at a specific moment in time the box contains attributes and
their values (at that moment in time).

attribute = value

These diagrams are useful for illustrating particular ‘snapshot’ scenarios during design.

The object diagram below shows several object that may exist at a moment in time for a library catalogue
system. The system contains two classes:-

Book, which store the details of a book and
Library, which maintains a collection of books. With books being added, searched for or
removed as required.

Looking at this diagram we can see that at a particular moment in time, while three books have been
created only two have been added to the library. Thus if we were to search the library for ‘Cooking for
Beginners’ we would not expect the book to be found.

As with class diagrams, elements can be freely suppressed on object diagrams.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

48

The Unified Modelling Language (UML)

For example, all of these are legal:

2.6 UML Sequence Diagrams

Sequence diagrams are entirely different from class diagrams or object diagrams. Class diagrams describe
the architecture of a system and object diagrams describe the state of a system at one moment in time.
However sequence diagrams describe how the system works over a period of time. Sequence diagrams
are ‘dynamic’ rather than ‘static’ representations of the system. They show the sequence of method
invocations within and between objects over a period of time. They are useful for understanding how
objects collaborate in a particular scenario.

See the example below:-

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

49

The Unified Modelling Language (UML)

We have three objects in this scenario. Time runs from top to bottom, and the vertical dashed lines
(lifelines) indicate the objects’ continued existence through time.

This diagram shows the following actions taking place:-

•	 Firstly a method call (often referred to in OO terminology as a message) to method0()
comes to object1 from somewhere – this could be another class outside the diagram.

•	 object1 begins executing its method0() (as indicated by the vertical bar (called an activation
bar) which starts at this point.

•	 object1.method0() invokes object2.method1() – the activation bar indicates that this
executes for a period then returns control to method0()

•	 Subsequently object1.method0() invokes object2.method2() passing two parameters
•	 method2() subsequently invokes object3.method3(). When method3() ends it passes a

return value back to method2()
•	 method2() completes and returns control to object1.method0()
•	 Finally method0() calls another method of the same object, method4()

Selection and Iteration

The logic of a scenario often depends on selection (‘if ’) and iteration (loops).

There is a notation (‘interaction frames’) which allow ifs and loops to be represented in sequence diagrams
however these tend to make the diagrams cluttered.

Sequence diagrams are generally best used for illustrating particular cases, with the full refinement
reserved for the implementation code.

Fowler (“UML Distilled”, 3rd Edn.) gives a brief treatment of these constructs.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

50

The Unified Modelling Language (UML)

2.7 Summary

UML is not a methodology but a precise diagramming notation.

Class diagrams and package diagrams are good for describing the architecture of a system. Object
diagrams describe the data within an application at one moment in time and sequence diagrams describe
how a system works over a period of time.

UML gives different meaning to different arrows therefore one must be careful to use the notation
precisely as specified.

With any UML diagram suppression is encouraged – thus the author of a diagram can suppress any
details they wish in order to convey essential information to the reader.

ENGINEERS, UNIVERSITY
GRADUATES & SALES
PROFESSIONALS
Junior and experienced F/M

Total will hire 10,000 people in 2014.
Why not you?

Are you looking for work in
process, electrical or other types of
engineering, R&D, sales & marketing
or support professions such as
information technology?

We’re interested in your skills.

Join an international leader in the
oil, gas and chemical industry by
applying at

www.careers.total.com
More than 700 job
openings are now online!

Potential
for development

C
op

yr
ig

ht
 :

To
ta

l/C
or

bi
s

for development

Potential
for exploration

http://bookboon.com/
http://bookboon.com/count/advert/f512d1dd-ebe8-4036-b221-a2f500bd9ae3

